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ABSTRACT: Inspired by the nacre, we demonstrated the integrated ternary
artificial nacre nanocomposites through synergistic toughening of graphene
oxide (GO) and nanofibrillar cellulose (NFC). In addition, the covalent
bonding was introduced between adjacent GO nanosheets. The synergistic
toughening effects from building blocks of one-dimensional NFC and two-
dimensional GO, interface interactions of hydrogen and covalent bonding
together result in the integrated mechanical properties including high tensile
strength, toughness, and fatigue life as well as high electrical conductivity.
These extraordinary properties of the ternary synthetic nacre nano-
composites allow the support for advances in diverse strategic fields
including stretchable electronics, transportation, and energy. Such bioinspired
strategy also provides a new insight in designing novel multifunctional
nanocomposites.
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■ INTRODUCTION

Over the course of time, billions of years in fact, nacre has
achieved outstanding mechanical properties by constructing
hierarchical micro/nanoscale structure, with abundant interface
interactions and synergistic effects.1 Nacre is essentially
laminated composite containing alternately hexagonal platelets
of aragonite cross-linked with a thin layer of organic material,
including nanofibrillar chitin2 and softer protein.3,4 The
intrinsic structure and synergistic effects of nacre inspired
many researchers to build ternary artificial nacre through
assembling two-dimensional (2D) and one-dimensional (1D)
building blocks with cross-linking of organic molecules, which
plays a key role in fabricating high-performance nano-
composites. Prasad et al.5 demonstrated such synergistic effect
by using two different nanocarbons (graphene nanosheets and
single-walled carbon nanotube (SWNT)) with the matrix of
poly(vinyl alcohol) (PVA). Shin et al.6 also demonstrated super
tough ternary nanocomposite fibers via synergistic building
blocks of reduced GO (rGO) and SWNT in the matrix of PVA.
We have also built ternary nanocomposites with excellent
mechanical performance through synergistic effect from 1D and
2D building blocks, such as nanoclay-nanofibrillar cellulose
(NFC)-PVA,7 and rGO/molybdenum disulfide (MoS2)/
thermoplastic polyurethanes (TPU) (rGO-MoS2-TPU).8 Re-
cently, we constructed GO-based nanocomposites through
synergistic toughening, indicating outstanding mechanical

properties.9 Despite these advances, fundamental basic research
regarding the design and fabrication of ternary nacre-like
nanocomposites using synergistic toughening of building blocks
plus interface interactions is still needed.
In this study, NFC was chosen as 1D building block. The

NFC is inexpensive, ecofriendly, and easy to obtain as
compared with double-walled carbon nanotube (DWNT).9

The NFC, mainly derived from wood with diameter in the
nanoscale and length in the microscale,10,11 shows high elastic
modulus of ∼150 GPa12 and abundant hydroxyl groups on its
surface,13 thus suitable for constructing interface interactions
with GO sheets via hydrogen bonding network. Herein, we
demonstrated an integrated artificial nacre-like nanocomposite
through synergistic toughening of 1D NFC and 2D GO sheets
as building blocks and covalently cross-linking. This kind of
ternary artificial nacre nanocomposite shows the ultimate stress
of 314.6 MPa and a toughness of 9.8 MJ/m3. Meanwhile, the
ternary artificial nacre also demonstrates high fatigue life and
electrical conductivity as high as 162.6 S/cm. This kind of high-
performance artificial nacre supports advances in diverse
strategic fields including nanomembrane sensors, stretchable
electronics, transportation, and/or energy. Such bioinspired
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strategy using synergistic toughening mechanisms also provides
new vision for designing novel multifunctional nanocomposites.
The Experimental Section is listed in the Supporting
Information.

■ RESULTS AND DISCUSSION

GO nanosheets prepared using modified Hummers’ method
had the size in a range of 0.2−0.7 μm and the thickness of ∼1.0

nm (Figure 1a). NFC fibrils were prepared based on the
previous reports.13,14 NFC fibrils show the length of 200−800
nm and average diameter of ∼4.1 nm (Figure 1b). Nacre-like
nanocomposites were constructed using the technique shown
in Figure 1c. First, binary GO-NFC layered nanocomposites
were assembled via evaporation process. Five kinds of GO-
NFC binary nanocomposites with ratios of (GO/NFC = 80:20,
90:10, 93:7, 95:5, 97:3) were fabricated and listed as GO-NFC-
I, GO-NFC-II, GO-NFC-III, GO-NFC-IV, and GO-NFC-V,

Figure 1. Size of GO nanosheets (a) and rodlike NFC fibrils (b). (c) Schematic illustration of fabrication procedure of ternary artificial nacre
nanocomposites. A digital image (d) and the cross-section morphology (e) of ternary artificial nacre nanocomposites.

Figure 2. (a) Typical stress−strain curves of GO film (Curve 1), NFC film (Curve 2), rGO film (Curve 3), GO-NFC-IV hybrid materials (Curve 4),
GO-NFC-PCDO-IV nanocomposites (Curve 5), rGO-NFC-IV hybrid materials (Curve 6), and rGO-NFC-PCDO-IV nanocomposites (Curve 7).
(b, c) The mechanical properties of rGO-NFC-PCDO nanocomposites with different GO loading. (d) The proposed fracture mechanism of rGO-
NFC-PCDO-IV ternary artificial nacre nanocomposite under stress. (e) The side view of rGO-NFC-PCDO-IV nanocomposites after tensile testing.
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respectively. The exact content of GO in the binary-layered
nanocomposites was determined by TGA (Supporting
Information, Figure S1 and Table S1). Next the GO-NFC
binary-layered nanocomposites were covalently cross-linked
through 10,12-pentacosadiyn-1-ol (PCDO) according to the
previous report,15 resulting in the GO-NFC-PCDO ternary
nacre-like nanocomposites. After chemical reduction with
hydroiodic acid (HI), the obtained rGO-NFC-PCDO ternary
artificial nacre nanocomposites (Figure 1d) show the layered
structure (Figure 1e).
X-ray diffraction (XRD) results confirmed that NFC and

PCDO were successfully introduced into the interlayers of the
GO nanosheets (Supporting Information, Figure S2 and Table
S2). As NFC was added, the d-spacing of GO-NFC increased,
indicating that NFC was uniformly distributed in the interlayer
of GO-NFC binary layered nanocomposites. After grafting with
PCDO molecules, the d-spacing of GO-NFC-PCDO nano-
composites further increased. On the contrary, the d-spacing of
rGO-NFC-PCDO nacre-like nanocomposites notably de-
creased.15 Fourier transform infrared spectroscopy (FTIR)
and X-ray photoelectron spectra (XPS) are also conducted to
verify the covalent cross-linking by PCDO molecules,16,17 as
shown in Figures S3 and S4 (Supporting Information).
As shown in Figure 2a, the pure GO film exhibits the tensile

strength of 104.7 ± 1.4 MPa and toughness of 1.1 ± 0.2 MJ/m3

(Curve 1 in Figure 2a). The pure NFC film shows high
mechanical properties with tensile strength of 201.8 ± 6.8 MPa
and toughness of 2.0 ± 0.2 MJ/m3 (Curve 2 in Figure 2a).
After reduction by HI, rGO film indicates the ultimate strength
of 133.7 ± 5.8 MPa and toughness of 2.8 ± 0.7 MJ/m3 (Curve
3 in Figure 2a). For the GO-NFC films with different loadings
of GO, the optimized maximum mechanical properties are
realized at the GO loading of 94.7 wt % (GO-NFC-IV;
Supporting Information, Figure S5), and listed in Table S3
(Supporting Information). The GO-NFC-IV reach tensile
strength of 200.3 ± 6.7 MPa and toughness of 4.0 ± 0.2 MJ/
m3 (Curve 4 in Figure 2a). The mechanical properties of GO-
NFC-PCDO-IV nanocomposites with covalent cross-linking by
PCDO are enhanced to 225.6 ± 4.1 MPa and 3.9 ± 0.2 MJ/m3

(Curve 5 in Figure 2a). The PCDO content is ∼2.82 wt %, as
determined by TGA, shown in Figure S6 (Supporting
Information). The mechanical properties of rGO-NFC-IV
and rGO-NFC-PCDO-IV nanocomposites are improved to
214.8 ± 7.8 MPa and 5.2 ± 0.5 MJ/m3 (Curve 6 in Figure 2a)
and to 314.6 ± 11.7 MPa and 9.8 ± 1.0 MJ/m3 (Curve 7 in
Figure 2a), respectively. Figure 2b,c shows the trend of
mechanical properties of rGO-NFC-PCDO nanocomposites

with different GO loading. The mechanical properties of rGO-
NFC-PCDO-IV with GO content of 94.7 wt % especially
demonstrate the maximum values, consistent with natural nacre
having almost 95 vol % inorganic aragonite and also consistent
with the idea of biomimetic concept.1

The proposed fracture mechanism of our nacre-like nano-
composites is shown in Figure 2d. First, the hydrogen bonding
between rGO and NFC is destroyed, accompanying with the
slippage between adjacent rGO nanosheets and the NFC to
resist the sliding, resulting in the stress uniformly dispersed in
the rGO nanosheets and NFC. Meanwhile, much more energy
is dissipated in the process of stretching PCDO molecules.15

The NFC chains are also pulled out after further stretching
process. Further loading results in the breaking of covalent
cross-linking between PCDO and rGO nanosheets and curved
edges of rGO nanosheets (Figures 2e). It is clearly shown that
the GO nanosheets curved in rGO-NFC-PCDO nano-
composites and that the NFC was pulled out, as indicated
with direction of arrows. With the increase of NFC contents in
GO-NFC, more rodlike fibrils were distributed uniformly along
the GO nanosheets. After cross-linking of PCDO and chemical
reduction by HI, rGO nanosheets stacked closer, and rodlike
fibrils were oriented along the direction of curved rGO
nanosheets (Supporting Information, Figure S7).
The synergistic effect of the building blocks of GO

nanosheets and NFC on the improvement of mechanical
properties can be quantified using the synergy percentage (S),5

which we modified as follows:

=
− +

+
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where MNFC, MGO, and Mhyb represent the mechanical
properties of NFC film, GO film, and GO-NFC hybrid layered
materials. The synergy percentage of GO-NFC and rGO-NFC-
PCDO nanocomposites are also calculated (Supporting
Information, Table S3). The strength synergy percentage
increases with increasing GO content and reaches the
maximum value of 30.7% for GO-NFC-IV when the GO
content is 94.7 wt % (Figure 3a). Meanwhile, the toughness
synergy percentage also reaches the maximum value of 158.1%
for GO-NFC-IV (Figure 3b), indicating that synergistic effects
can be optimized by adjusting the ratios of 1D NFC and 2D
GO nanosheets, consistent with the previous report.6

Furthermore, the synergy percentage can be further enhanced
via strong interface interactions of covalently cross-linking.9

The synergy percentage of strength and toughness increases to

Figure 3. Synergy percentage of increases with GO contents in binary GO-NFC hybrid layered materials, GO-NFC-PCDO, and rGO-NFC-PCDO
ternary artificial nacre nanocomposites: (a) strength and (b) toughness synergy percentage.
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87.5% and 308.3% for rGO-NFC-PCDO-IV nanocomposites,
respectively. Compared with our previous work,9 this study
further confirms that the synergy percentage can be additionally
improved via constructing hydrogen and covalent bonding
together, which also provides a new strategy for improving the
mechanical properties of layered nanocomposites.
This kind of synergistic effects from interface interactions

and building blocks not only enhances the static mechanical
properties of bioinspired nanocomposites but also dramatically
improves the dynamic mechanical properties, such as the
fatigue life. Herein, the cyclic tensile tests were performed to
verify the fatigue life (Figure 4a),18 and the corresponding
stress−strain fatigue curves are listed in Figure S8 (Supporting
Information). The fatigue life of rGO-NFC-PCDO nano-
composites is much higher than that of GO-NFC hybrid
layered materials and GO-NFC-PCDO-IV nanocomposites at
the same stress level, which indicates the synergistic toughening
effects from building blocks of GO, NFC, and interfacial
interactions together. The fracture morphology of GO-NFC
hybrid layered materials and rGO-NFC-PCDO nacre-like
nanocomposites were investigated by SEM (Figure 4b,c). The
crack propagation was suppressed by GO nanosheets by crack
deflection. The covalent bonding between adjacent 2D rGO
nanosheets in the rGO-NFC-PCDO-IV ternary artificial nacre
nanocomposites also plays a key role in suppressing crack
propagation via crack bridging and a subsequent broken of
covalent bonding, resulting in curving of rGO nanosheets
(Figure 4c). The fatigue life is prolonged through crack
deflection and bridging together.
Figure 5a indicates that the integrated mechanical properties

of rGO-NFC-PCDO nanocomposites are higher than nacre2

and other GO-based nanocomposites.19 For example, the GO
nanosheets are covalently cross-linked with different molecules,
such as glutaraldehyde (GO-GA),20 polyallylamine (GO-
PAA),21 borate (GO-borate),22 poly(ether imide) (PGO−
PEI),23 10,12-pentacosadiyn-1-ol (rGO-PCDO),15 and poly-
(dopamine) (rGO-PDA).24 In addition, the GO-based nano-
composites with other interfacial interactions also show lower
mechanical properties than this kind of ternary artificial nacre
nanocomposites, including hydrogen bonding with poly(methyl
methacrylate) (GO-PMMA),25 poly(vinyl alcohol) (rGO-
PVA),26 silk (rGO-SL),27 and ionic bonding with calcium
(GO-Ca2+),28 magnesium (GO-Mg2+),28 and iron (GO-Fe3+).29

Table S5 (Supporting Information) listed the corresponding
tensile strength and toughness.
Furthermore, the electrical conductivity of the rGO-NFC-

PCDO-V nanocomposites with 162.6 S/cm is higher than that
of previous rGO-MoS2-TPU,

8 rGO-PCDO15 nanocomposites,
and the other cellulose nanocrystals/rGO nanocomposites.30

Building a circuit, using the blue LED bulb connected to the
power supply, and using the nanocomposite as a conducting
wire, the electrical conductivity of the rGO-NFC-PCDO
ternary nacre-like nanocomposites was investigated. The test
shows excellent conductivity of the nanocomposite wire. The
nacre-like nanocomposites can also be easily folded without
breaking (Figure 5b,c), indicating their applicability in flexible
and stretchable electronic devices.

■ CONCLUSION

Nature is far more successful in designing strong and tough
materials than with most man-made materials and provides an
inspiration for designing novel nanocomposites. Using nacre as

Figure 4. (a) Tensile fatigue testing of GO film, GO-NFC-IV hybrid layered materials, GO-NFC-PCDO-IV nanocomposites, and rGO-NFC-
PCDO-IV ternary artificial nacre nanocomposites. (b) The fracture morphology of GO-NFC-IV hybrid layered materials and (c) rGO-NFC-PCDO-
IV nanocomposite after fatigue testing.

Figure 5. (a) Mechanical properties comparison. (b) Schematic of the circuit. (c) The digital photo of circuit.
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an example, we have successfully constructed integrated ternary
artificial nacre-like nanocomposites through synergistic tough-
ening of graphene oxide nanosheets and nanofibrillar cellulose.
The synergistic toughening effects of building blocks and
interface interactions resulted in outstanding integrated
mechanical properties, as well as high electrical conductivity
and excellent fatigue properties. These outstanding properties
provide promising applications in the fields of stretchable
electronics, transportation, and energy. Such bioinspired
strategy also provides a new insight and clever guidelines in
designing novel multifunctional nanocomposites.
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