With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a “gold standard” for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m², which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.

Keywords: integrated ternary bioinspired nanocomposite · synergistic toughening · graphene oxide · double-walled carbon nanotube

Graphene’s extraordinary properties as the strongest and stiffest material ever measured¹ and the best-known electrical conductor² could have promising applications in many fields. However, it is a great challenge to assemble graphene microscale nanosheets into macrosize nanocomposites for practical applications. Nacre, the gold standard for bioinspired materials with integrated high strength and toughness, provides an excellent example for assembling two-dimensional (2D) nanosheets into high-performance nanocomposites. In fact, the extraordinary properties of natural nacre are attributed to its unique hierarchical micro/nanoscale structure and synergistic toughening effects from 2D aragonite platelets, one-dimensional (1D) nanofibrillar chitin, and interface interactions. Graphene oxide (GO), a derivative of graphene, is one of the best candidates for fabricating bioinspired nanocomposites owing to its many functional groups on the surface. Recently, many reports on GO-based nanocomposites have been reported. For example, Zhang et al. demonstrated ultrastrong GO-based materials (tensile strength of 382 MPa) through π–π interactions with poly(acrylic acid-co-(4-acrylamidophenyl) boronic acid) (PAPB) after chemical reduction. An et al. realized ultrastiff GO-based materials (storage modulus of 127 GPa) through borate orthoester covalent bonding. Tian et al. also reported on ultrahigh modulus GO-based materials (Young’s modulus of 103.4 GPa) through covalent bonding between polydopamine (PDA) grafted on GO nanosheets and poly(ether imide) (PEI).

However, the conflicts between strength and toughness have commonly existed in binary nanocomposites. Prasad et al. addressed correspondence to cheng@buaa.edu.cn.

Received for review August 21, 2015 and accepted October 15, 2015.

Published online October 15, 2015 10.1021/acsnano.5b05252

© 2015 American Chemical Society

GONG ET AL.

VOL. 9 • NO. 12 • 11568–11573 • 2015

www.acsnano.org
observed the extraordinary synergistic effects in ternary nanocomposites with two different types of nanocarbons incorporated into poly(vinyl alcohol) (PVA). Shin et al.14 achieved ultratough ternary nanocomposite fibers through a synergistic effect from reduced graphene oxide (rGO) and single-walled carbon nanotubes (SWNTs) in the PVA matrix. In our previous work, we also demonstrated an effective synergistic effect and obtained integrated strong and tough ternary bioinspired nanocomposites made of nanoclay/nanofibrillar cellulose/poly(vinyl alcohol)15 and GO/molybdenum disulfide (MoS2)/thermoplastic polyurethanes (TPU).16

Herein, inspired by the synergistic effect in hierarchical micro/nanoscale of natural nacre, we further demonstrated strong and tough integrated ternary bioinspired nanocomposites with nanoclays/nanocellulose/poly(vinyl alcohol)15 and GO/molybdenum disulfide (MoS2)/thermoplastic polyurethanes (TPU).16

RESULTS AND DISCUSSION

The schematic illustration of the ternary bioinspired nanocomposites fabrication process is shown in Figure 1. In Step 1, the GO/DWNTs homogeneous suspension was first obtained by slowly dropping the DWNT dispersion into GO suspension with continuous stirring and ultrasonication. Then, the GO/DWNTs hybrid building blocks were assembled into GO–DWNT hybrid layered materials through an evaporation process at 45 °C for 2 days. In this work, to explore the synergistic effect, a series of hybrid layered materials with different ratios of GO to DWNT were fabricated, including 70:30 (GO–DWNT-I), 85:15 (GO–DWNT-II), 90:10 (GO–DWNT-III), 93:7 (GO–DWNT-IV), and 95:5 (GO–DWNT-V). The exact contents of GO in the hybrid layered materials were determined by thermogravimetric analysis (TGA), as shown in Figure S1 and Table S1. In Step 2, the GO–DWNT hybrid layered materials were immersed into the 10,12-pentacosadiyn-1-ol (PCDO)/tetrahydrofuran (THF) solution. Esterification between GO and PCDO occurred,17 which was confirmed by Fourier transform infrared spectroscopy (FTIR) (Figure S2), and X-ray photoelectron spectra (XPS) (Figure S3). In Step 3, 1,4-addition polymerization happened between π-conjugated diacetylenic units on PCDO chains under UV irradiation, forming the covalent cross-linking between adjacent GO nanosheets,17 leading to the GO–DWNT–PCDO nanocomposites. In Step 4, the residual functional groups on GO nanosheets were removed through chemical reduction of hydroiodic acid (HI), and then the ternary bioinspired nanocomposites...
of rGO–DWNT–PCDO were obtained. X-ray diffraction (XRD) was conducted to further verify the successful introduction of DWNTs and PCDO into the interlayers of GO nanosheets, as shown in Figure S4 and Table S2. The transmission electron microscopy (TEM) image (bottom left) shows the cross-section of ternary bioinspired nanocomposites of rGO–DWNT–PCDO. DWNT is dispersed on the surface of GO nanosheets as proposed in the schematic illustration, which is direct evidence of ternary bioinspired nanocomposites.

Typical stress–strain curves of the prepared samples are shown in Figure 2a. Pure GO film’s (curve 1 in Figure 2a) tensile strength (116.5 ± 2.3 MPa) and toughness (1.9 ± 0.1 MJ/m²) are consistent with a previous report. After the GO film is chemically reduced by HI, the tensile strength and toughness of rGO film (curve 2 in Figure 2a) reach 141.8 ± 10.8 MPa and 2.8 ± 0.3 MJ/m², respectively, which is consistent with the previous report. Different ratios of GO to DWNTs result in different synergistic percentages, which play a key role in mechanical properties. With increasing GO contents, the tensile strength and toughness of GO–DWNT hybrid layered materials were dramatically improved, as shown in Figure S5 (the detailed mechanical properties are listed in Table S3). The tensile strength and toughness of GO–DWNT–PCDO hybrid layered materials reach 230.8 ± 3.1 MPa and 3.0 ± 0.3 MJ/m² (curve 3 in Figure 2a), respectively. After covalent cross-linking with PCDO, the mechanical properties of rGO and DWNT films were dramatically enhanced. The corresponding tensile strength–strain curves are shown in Figure S6, and the details mechanical properties are listed in Table S3. Especially for ternary bioinspired nanocomposites, for example, the tensile strength and toughness of rGO–DWNT–PCDO-V nanocomposites increase to 238.2 ± 5.4 MPa and 4.1 ± 0.4 MJ/m² (curve 4 in Figure 2a), respectively. The PCDO content is about 2.24 wt % determined by TGA, as shown in Figure S7. The tensile strength and toughness of rGO–DWNT–PCDO-V further increase up to 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m³ after HI reduction (curve 5 in Figure 2a), which are 2 and 5 times higher than that of natural nacre (170 MPa and 1.8 MJ/m³), respectively. Figure 2 panels b and c show that the tensile strength and toughness of rGO–DWNT–PCDO nanocomposites are further improved with increasing GO contents, indicating the synergistic effect from GO nanosheets and DWNTs is enhanced by the covalent bonding between GO nanosheets and PCDO molecules.

The front and side view fracture morphologies of rGO–DWNT–PCDO-V nanocomposites were shown in Figures 2d,e. The GO–DWNT hybrid layered materials show a brittle fractured morphology without the edge curling of GO nanosheets after the DWNTs were pulled out (Figure S8). It is clearly shown that the DWNTs were pulled out along the direction of tensile stretching and the edge of GO nanosheets curled in the rGO–DWNT–PCDO nanocomposites. A typical proposed fracture mechanism is shown in Figure 2f. In the early stretching process of Stage I, the slippage first occurs between adjacent rGO nanosheets, and the DWNTs bridge adjacent rGO nanosheets to resist the sliding, resulting in the stress uniformly dispersing in the rGO nanosheets and DWNTs. For further loading in Stage II, the curvy DWNTs and coiled PCDO molecule chains between the rGO nanosheets are gradually stretched along the stretching direction, further absorbing energy. After the π-conjugated force between the rGO nanosheet and DWNTs is broken, the DWNTs were pulled out, resulting in a large plastic deformation. When the loading further increased in Stage III, the covalent bonding between the PCDO and rGO nanosheets is broken, and the external force induces the curling of the edge of the rGO nanosheets.

To quantify the synergistic effect on the mechanical properties’ improvement of ternary bioinspired
nanocomposites, the synergy percentage (S) proposed by Prasad13 is modified as follows:

$$S = \frac{2\sigma_{\text{hyb}} - (\sigma_{\text{DWNT}} + \sigma_{\text{GO}})}{\sigma_{\text{DWNT}} + \sigma_{\text{GO}}} \times 100$$

where σ_{hyb}, σ_{DWNT}, and σ_{GO} represent the tensile strength of GO–DWNT hybrid layered materials, DWNT film, and GO film, respectively. The synergy percentage of tensile strength for binary GO–DWNT hybrid layered materials and ternary bioinspired nanocomposites are also listed in Table S3. As shown in Figure 3, the synergy percentage dramatically increases with GO contents. For example, the strength synergy percentage increases from 73.6% for GO–DWNT-I to 206.5% for GO–DWNT-V. After covalent cross-linking with PCDO, the synergy percentage is further enhanced, and the strength synergy percentage is enhanced 325.4% for rGO–DWNT–PCDO-V ternary bioinspired nanocomposites (Figure 3). Compared with previous reports,13,14 this study confirms that the covalent bonding would dramatically enhance the synergistic effect, providing a new strategy for further improving the mechanical properties through synergistic toughening.

In fact, this kind of synergistic effect also supplies the unique fatigue properties for ternary bioinspired nanocomposites besides static mechanical properties. The cyclic tensile loading tests were performed at a frequency of 1 Hz, and the stress ratio (R: minimum to maximum applied stress) was 0.1.21 Figure 4a shows the maximum tensile stress (S) versus the number of cycles to failure (N) for pure GO film, GO–DWNT-V hybrid layered materials, and rGO–DWNT–PCDO-V ternary nanocomposites. The corresponding stress–strain fatigue curves are shown in Figure S9. It is obvious that the fatigue life of rGO–DWNT–PCDO-V ternary nanocomposites is almost 5 orders of magnitude higher than that of the GO–DWNT-V hybrid layered materials at the same stress level, further verifying the synergistic toughening effect from GO nanosheets and DWNTs. The 2D GO nanosheets suppress crack propagation by crack deflection and thus increase the fracture surface area during crack growth. The 1D DWNTs suppress crack propagation by crack bridging and a subsequent pull-out of DWNTs. These two crack suppression mechanisms act synergistically, increasing energy dissipation and prolonging fatigue life. The fracture morphology of GO–DWNT-V hybrid layered materials (Figure 4b) and rGO–DWNT–PCDO-V ternary nanocomposites (Figure 4c) after fatigue testing shows that DWNTs are curled much more than those of static mechanical testing, further conforming the 1D DWNT suppressing crack propagation by crack bridging.

The synergistic toughening of GO and DWNTs plus covalent bonding offers the advantage of integrated high strength, toughness, and electrically conductive rGO–DWNT–PCDO-V ternary nanocomposites compared with natural nacre and other binary GO-based nanocomposites with different interface interactions, such as hydrogen bonding (GO–PMMA,22 rGO–PVA,23 and rGO–SL,24), ionic bonding (GO–Mg$^{2+}$, and GO–Ca$^{2+}$),25 π–π conjugated interactions (rGO–PAP8), and covalent bonding (GO–GA,26 GO–borate,10 PGO–PEI,11...
CONCLUSION

Natural nacre sets a “gold standard” for materials with integrated high strength and toughness. Inspired by the hierarchical micro/nanoscale structure of nacre, we have fabricated 2D rGO nanosheets and 1D DWNTs-based bioinspired nanocomposites that successfully integrate high strength and toughness. The synergistic effect from 2D rGO nanosheets and 1D DWNTs and covalent bonding resulted in extraordinary integrated mechanical properties. The tensile strength and toughness are 2.6 and 3.3 times that of pure reduced GO film, respectively. These integrated bioinspired nanocomposites also exhibit high electrical conductivity and excellent fatigue-resistant properties, which will enable new materials for a number of applications, such as aerospace, flexible energy devices, and artificial muscles. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a novel strategy for the fabrication of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.

METHODS

Materials. Crystalline graphite powder was purchased from Qingdao JingRiLai Graphite Co., Ltd. High-purity double-walled carbon nanotubes (DWNTs) with a diameter of about 1.8 nm were purchased from XianFeng NANO Co., Ltd. 10,12-Pentacosadyn-1-ol (PCDO) was purchased from Tokyo Chemical Industry Co., Ltd., and 57 wt % hydroiodic acid (HI) was purchased from Sigma–Aldrich.

Fabrication of GO–DWNT Hybrid Layered Materials. Graphene oxide (GO) was prepared by the modified Hummers’ method. The diameter of GO is 1.0–3.0 μm. A certain amount of GO nanosheets were dispersed in deionized water, followed by continuous stirring for 1 h and ultrasonication for 30 min. Then the homogeneous GO solution was obtained. The DWNT dispersion solution was slowly dropped into the GO solution under continuous ultrasonication. Finally, the mixture solution of GO/DWNTs was transferred into a tetrafluoroethylene container, which was placed into an oven with a temperature of 45 °C for 2 days. The GO–DWNT hybrid layered materials were obtained.

Fabrication of Ternary Bioinspired Nanocomposites. First, the GO–DWNT hybrid layered materials were immersed in a PCDO/THF solution. Subsequently, the PCDO-grafted GO–DWNT were treated under UV irradiation at a wavelength of 365 nm at the atmosphere of nitrogen. The final GO–DWNT–PCDO nanocomposites were rinsed, and then reduced by 57 wt % HI solution. Finally, the rGO–DWNT–PCDO nanocomposites were obtained after washing with deionized water and alcohol and drying.

Characterization. Mechanical properties were tested by a standard two-probe method using a source meter (Agilent E4980A). The electrical conductivities of the ternary bioinspired nanocomposites were measured by a two-probe method using a source meter (Agilent E4980A).

Supporting Information Available: The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b05252.

Characterizations of bioinspired nanocomposites, such as TGA, SEM, XPS, fracture morphology, detailed tensile strength and toughness (PDF)
REFERENCES AND NOTES

